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Abstract. We consider diagram algebra®)(Q) (generalized Temperley-Lieb algebras)
defined for a large class of grapts including those of relevance for cubic lattice Potts models,
and study their structure for gener@. We find that these algebras are too large to play the
precisely analogous role in three dimensions to that played by the Temperley—Lieb algebras for
genericQ in the planar case. We outline measures to extract the quotient algebra that would
illuminate the physics of three-dimensional Potts models.

lines

1. Introduction

With the benefit of hindsight it is striking how easy it might have been, 15-20 years ago,
to identify roots of unity as the values qf that were special for the description of the
physics ofQ = (¢ +¢~1)? state Potts models in two dimensions, and related spin chains in
one dimension. It is the work of a few lines to derive these as the exceptional cases using
the Temperley—Lieb algebra introduced by Temperley and Lieb (1971) [1] (see [9]). This
could have been done before many of the models were solved. Only the interpretation of
this result might have puzzled the early ‘algebraic physicist’. Of course, this is not the way
things happened. The location of the special points is revealed idetiads of the solution

of the models [2, 3, 7], and it was only after the solution of the models that the significance
of the special points and their relation to the cataloguing of models into universality classes
was appreciated.

In a sense, we find ourselves heading down the same path now for three and higher
dimensional models. There has been some very impressive work done on models whose
Boltzmann weights satisfy the tetrahedron equations [8], but that is not the route we follow
here. In [20] it was suggested that the diagram algelrasQ) (defined below) for some
sequence of graph6 @ = {(G™, G@, ...} would play the role of the Temperley—Lieb
algebra for higher dimensions (the Temperley—Lieb algebra is the sequence of diagram
algebras withG') = A;, whereA; is the j-node chain graph). In this paper we determine
the structure ofDg(Q) for enough graphsG to show that a direct analogy with two
dimensions is too simplistic in general, and suggest a resolution.

The paper is structured in the following way. We introduce ¢ghsatate Potts model on
any lattice, and point out the relation between the transfer matrix of the two-dimensional
model and the Temperley-Lielr() algebra. Since we take the algebraic route in this
paper, we then state the specific link between representation theory (the index set for distinct
irreducible representations) and physics (primary fields in the two-dimensional conformal
field theory €FT)) that we would like to examine in the higher dimensional context. Namely,
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264 S Dasmahapatra and P Martin

when the index set inite, the correspondingFT is minimal In two dimensions, the index

set is finite at the special values ¢f called Beraha numbers, which are also the values at
which theTL algebras defined for a sequence of chain graphs of increasing length become
non-semisimple beyond some length. One of our objectives in this paper is to locate the
correspondingQ-values at which our candidate algebg (Q) becomes non-semisimple

in an analogous way.

We define the diagram algebra as a subalgebra of the partition algebra [19] in the last
part of this section. The basis of the defining representation of the diagram algebra is taken
from the set of partitions of the nodes of two copies of a gr@plkalled ‘top’ and ‘bottom’.
Multiplication in the algebra involves stacking one such top and bottom over another, and
keeping track of the resulting partitions by transitivity (see figure 1). In section 2, we tackle
the problem of classifying the irreducible representation®gf Q) for genericQ. This is
carried out in two steps—first by noting the number of parts with both top and bottom nodes
as above (called the number of ‘propagating lines’) and then by the permutations of these
lines allowed on a given grapfi. We do this for a large class of graphs and, in particular,
for a class of graphs which we calhsplitting (see proposition 3 and the remark following
it). We also give necessary and sufficient conditions for a set of partitions to be a basis for
these irreducibles in proposition 6. Using this key result, we prove in proposition 7 that the
algebras defined for a sequence of unsplitting graphs ceases to be semi-simple for at least all
integer values ofD. In section 4, we apply the above results for the particular example of
an unsplitting graph that is relevant for building the transfer matrix of the three-dimensional
Potts model. We discuss the implication of these results next. The appendix lays out the
preliminary steps towards the description of the Bratteli diagram (or the inclusion matrix)
for the restriction of modules for the generically semi-simple algebrasc D¢ for graphs
G,H andH C G.

1.1. Basic definitions

For any simple, unoriented gragh, and natural numbe@, the partition function of the
Q-state Potts model [4] on the graghis

ZWy= Y. exp|B Y. o )
0e{l,2,...0} (i, )eA]
vieA?

where A9 denotes the set of nodes bf and A}, the set of its edges.
Recall that for graph& and H then G x H is a graph such that

A% = A x A, )
and

. (i, k) € AL and j=1[ or

i), (k, 1)) € AL
(G ). (D) € Mg G.D) e AL and i=k.

®)

Let A, be thet-node closed chain graph. Then for examglex A,, x A, would be the
cubic lattice with periodicity in one direction. For amy the partition function

Z(G x A) = Tr((1)") (4)
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whereT; is the (G shaped layer) transfer matrix defined as

w=[[(€ -1 +Vou.) [] <| + -1 Ui,j). (5)

ieAY (i,))eAl ‘/@
Here
l=1p®1p®...®1g (6)
(one factor for each node @, each factor @ x Q unit matrix)
1 .
Ui.=@(lg®|g®...®M®...|Q) (i € AD) (7)

ith
where M is the O x Q matrix with all entries 1, in théth position (note that writing the
factors in a row implies a total order om%—this is physically misleading for generél
and can be chosen arbitrarily, cf the two-dimensional case [2]) and

Uj=V0(o®lo®...® N_®...1p) (G, J) € AY) ®)
ith® jth

where N is the Q% x Q? diagonal matrix acting on thé&h and jth subspaces (and note
that j is not necessarily adjacent tan a given ordering) with index sdtl, 2, ..., O} x
{1,2,...,Q0}, and

y it = ©)
ENED =1 9 otherwise

(see [1,2,23)).
Note that these matrices obey

U? =/ QU Uz = JOouU:, U.U; ;U = U.. Ui jUiUij = U, (10)
(Ui, Up] =[Ui., U] = [Uij, Uil =0 i#j.k. (11)

Recall that forG = A, the graphL = G x A, is the square lattice on a cylinder,
and these matrices give a representation of the Temperley—Lieb algebra [1]. It is known
that this representation is faithful except at the Beraha-type numberg)[t6} cog np/b
(p, b integers), where it is faithful only on the unitarizable quotient [15]. Also, for other
values the number of distinct irreducible representations in this Potts representation grows
unboundedly withm, whereas forp, b integer it is finite and fixed by (a la primary fields
in rational conformal field theories [11]). The models corresponding to these Beraha-type
numbers have as massless Euclidean field theory limits the minimal models of conformal
field theory. Forp = 1, these lattice models are in the same universality class assthe
models [12,5, 14, 6] whose corresponding conformal field theories belong to the unitary
series of [13] withc = 1 — 6/[b(b — D)].

In this paper we address the question of what is the appropriate abstract algebra, in the
same sense as above, for the arbitrary sequétice In [20], it has been noted that the
algebra with generators and relations simply as in equation (11) (the full Temperley—Lieb
algebra) is too big, as the Potts representation is then never faithful for non-chain graphs.
Instead, we shall focus on the following finite dimensional quotients. In order to define
these quotients, it is useful to recall the definition of the partition algéhra= P,(Q)

[19, 20].

Let Sy, be the set of partitions of the s¢t,2,...,r,1,2,...,n'}. The C-linear
extension of the product defined in figure 1 on the vector space with Sagsigives the
partition algebrap,(Q).
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L A 4 '_vi
N s
t_o o -\0 -
SR o Figure 1. The top diagram ig, the one in the middlé, and the one
Qx N

i aob at the bottom is the produato b. Trace the connectivities from bottom
\\‘ i to top, and for each discarded part from the middle, pick up a factor of
S e Q to obtaina o b.

The diagram algebrd)s (Q), for a graphG is defined as the subalgebra of the partition
algebra with generators:

1= ((11)(22)...(nn")
A" = (A1)(22)... (). .. (an)) Vi e A (12)
AR = ((A1)(22)...G ji'fj)...(n)) VG, j) e AL

Note that ¥ = ((11)(22) ... (ij) ... (ji) ... (nn")) € P,(Q), is notin Dg(Q).

The diagram algebra may be also be thought of (visualized§zon A, (k large) as
the restriction ofP,(Q) to partitions achievable as connectivities (i.e. a set of mutually
non-intersecting trees, cf [10]) between the nodes of the bottom layer (the tiodedo
be calledi Vi € A2), and those of the top layer (the nodgsk) to be calledi’Vi € A2).

Note that, withV = C2,

pc - Dg(Q) —> End(VEIAel) (13)
given by

. . 1
p6(A™) =/ QU;. pG(AM) = TQU,-,J- (14)

is a representation of the diagram algebra called the Potts representation (equations (7), (8)).

The Potts representation is generically faithful éo= A,,, and for this reason, here we
try Dg(Q) as a candidate for the appropriate generalization of the Temperley—Lieb algebra
for arbitrary graphG. Note, in particular, thaD,, (Q) is isomorphic to the Temperley—Lieb
algebra for anyQ, including non-integer values.

The partition functionZ(L) may be computed working iDg(Q) instead of in the
defining Potts representation [2], as in the two-dimensional case, wheré th@)
calculation is that of the square lattice dichromatic polynomial [3, 10].

In the two-dimensional case the exceptional models may be identified directly at the
level of algebra by finding the values for which the structure of the Temperley—Lieb
algebra departs from the generic semi-simple structure. Our idea is that the departures from
generic behaviour would be important for arbitra¥y The structure oD (Q) is important
‘physically’, since it may be used to characterize the spectrum of the transfer matrix,
Thus we proceed to analyse the structureDgf(Q). This is already known for somé;
in particular, forG = A, and forG = K,, the complete graph on nodes [19]. In this
paper we consider graphs appropriate for higher dimensional Potts models and dichromatic
polynomials, including sequences appropriate for the physically crucial cubic lattice Potts
models, and the bi-plane lattices to which recent ideas in figbuperconductivity have
drawn attention [17].
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2. Generic structure of Dg(Q)

Mathematically, the first step in determining the structure (representation theory) of an
algebra is generally to label the irreducible representations. In what follows we take
n= |A%|. The irreducible representations 8f(Q) are labelled by

Lo={rFi:i=0,12...,n)

and sinceDg(Q) C P,(Q) all the irreducibles must be somehow contained in the
irreducibles ofP,(Q).

Consider P,(Q) as aDg(Q) module. Clearly anyP,(Q) module is also aDs(Q)
module. NowP,(Q) has been filtered into invariant subspaces with bases

B; = {x € S |#(x) < i}

where # (x) is the number of parts of containing both primed and unprimed nodes, called
the ‘propagating number’ of.
If we define

E” =[] <AJ')
j=i+l 0
thenC-spanB;) = P, E; P,. For a giverm, we drop the superscrigt) and write E;. Note
that #(F;) =i and fora, b € S,,,

# (ab) < min# (a), # (b))
and we ignore elements @f in evaluating #(z) Vz € P,(Q). Thus
Pn[i] = PnEiPn/PnEi—lpn

is a P,(Q) module with basisB; \ B;_1. Note that in the diagrammatic realization of the
left action of Dg(Q) on P,[i] the ‘bottom’ of eachx € B; \ B,_; (i.e. the connectivities
of the unprimed nodes of any € S,,) remains unchanged. That is, all elements with the
same bottom form a submodule.

For exampleA; := P,E; (mod P,E;_1P,) is one of the leftP, submodules of?,[i],
and P,[i] may be decomposed into submodules all of which are isomorphic. NoteAthat
has a basis the set of partitions which have each unprimed node in a different part, the last
n — i nodes singletons (i.e. in parts on their own), the others connected to primed nodes.

In fact, as a leftDg (Q) module A; breaks asDg(Q)E; & R; whereR; is either empty
or a direct sum of one-dimensional modules (see the appendix), so we need only focus on
D¢ E; mod DgE;_1Dg.

The final piece of the jigsaw foP,(Q) is to note thatP, E; is a projective rightS(i)
module (i.e. a direct summand of a direct sum of copies of the regular representation of
the symmetric group [18]) where the action is to permute the fi(ehprimed) nodes. For
example, see figure 2. Thug E; (mod) breaks up into simple modules indexedly i
(from S(i) representation theory [21]).

For Ds(Q), however, the picture is more complicated, sinbg E; is not always
closed under the right action &(i). For example, whereas,(Q)E, = S(n) modulo
P.(Q)E,_1P,(Q), we haveDgE, = CE, = C.1 modDgE,_1D¢g for any G. To see
this note that withn propagating lines from bottom to top 6f x A, (k large) there is only
one possibility, as depicted in figure 3. Our problem is thus reduced to determining the
maximum subgroupﬂ("; C S(@i) for which DgE; (mod DG E;_1D¢) is a right module. In
general, fori < n, the situation depends d@.
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Figure 2. The right action of the permutation group Figure 3. There is no space for lateral motion if all
(depicted in the box) is, diagrammatically, the actiorof the nodes oG (the hexagon) are propagating. The
from below. propagating lines are drawn with double lines.

Before actually determiningi/;, let us first explicitly construct words in the algebra
that would implement the group action. As is clear from figure 3, one or more nodgs of
need to be disconnected to allow for walks 6nx A, to realize any permutations of the
nodes (except for the identity permutation as in figure 3). Also, since there is no unique,
or natural ordering of the nodes &, we need to determine whethéf, depends on the
choice of the nodes disconnected BY.

For any subsets of {1,2,...,n}, let p, be the set differenc¢l, 2,...,n}\ s, and
Ep,) =[1;e,(A7/Q). For example, for = {i +1,i +2,...,n},

n AI
pi=1{12,...,i} and E, =[] () =E;. (15)
j=i+1 0
Definition 1. The partition basis ofDs(Q), denoted bySZGn is S5, N Dg. Also, set
B¢ := B, N Dg.

Definition 2. Let s, r C {1,2,...,n}, s.t. [s| = |t|. Then
= ¢!y = E,nXE,,, VX €S st. # (Ep X E;,)) = |psl} - (16)
These elements of (16) may be interpreted as bijectigis, p, — p,. Note, in
particular, thatd$ € S(p,) Ey,,;.
Lets =sAr=(s\t)U(t\s), the symmetric difference of setst, with |§] = 2d, i.e.

d elements of the: — i elements ofs are distinct from those of. Then3 partitions of§
of shape 2, i.e. of the form

((8161)(8283) - .. (8a87)) (17)

where the unstarred nodes &k s and the starred ones in  Consider chain subgraphs,
AD,i=1,...,d of the connected grapfi, with nodes Iabelled(“’ ,j=12..., u such
that the flrst node o) is x(’" = §; and they,th, x4 = &, Let us construct WOI’dtSAm

of the form

M2 L) ),
— —j-1
Wp0 = | | (A =i A =i == )A . (18)

j=0
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Figure 4. The element of the algebra shifting the ‘hole’ frainto §;. Note the
minimum height required to achieve this connectivity is of the order of the distance
|8 — 7).

Stwym achieves the connectivity which differs from the unit in

( (’X(Ml))()(éﬂl)xiﬂ’) )(X(H') (i)’ Qx“")x(“’ 1)()6(#1)) ) c DG(Q) (19)
on the sublatticeA?) x A, (k > w;), where (as beforeXx/’,1) = x{’ and

(" k) = ,(“’) (see figure 4).

It is useful to view the element of the algebra as one that pushes a ‘hole’ from its
location ins to one inz. The equivalence relation that defines the algabgd Q) c P,(Q)
implies that

d
oy = [ | wa, € (20)
i=1

independent of the choice of grapi§’ connecting the nodes éf Thus,
Proposition 1.
DGE{pV}DG =DgE;Ds Vs C{l,2,...,n} st |s|l=n—1i. (21)

The different choices of pairing the starred and unstarred nodés gife different
bijectionsg! € ®!. Let H.' := ®$. We then have

Proposition 2.For any fixed elemenp; € @, ¢! ®' = H} andHE = HE' if |s| = [1].

Proof. For setss, ¢, r of the same cardinality, these ‘bijections’ obey

o] oph € D! Vo, € ®f and ¢ e Dl (22)
Therefore,
CAS e AR A and |5 < |97 = || = [P (23)
foranyr,s,t,u €{1,2,...,n} with |r| = |s| = |t] = |u|.

In particular, |®}| = |<I> | and g} @ C @F = ¢/ @) = Pj, for a fixed ¢ @;. Also,
pLdSps = @!. This implies thatd$ = <I>’ and depends only on the cardinality|. O
Corollary 2.1.

D(;E{p_v} = DG E; and E,DGE;, = FE; ® H(l; mod DgE;_1Dg (24)

whereHg‘1 is no smaller than the maximal subgroupSx — 1) contained inH;, (so that
in particular if anyH;, = S(i) then H. = S(j) Vj < i).

Hence,

Theorem 1Let I',, T'c be index sets for irreducible representationsHjf and D¢ (Q)
respectively. Then

' =UTL.
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2.1. How to computéi;,

For an arbitrary graphG, |[A2|=n, anda € A%, consider closed chain subgraphs,
Apy1 C G with w € A . Settingd = 1, "’ = x() and u; = p + 2 in (20), we
notecb contalnsZ By pushing the hole around, by (18), so as to lie on other closed
chain subgraphs, the set of thgseycles generatefl;;~ L

B

' c Figure 5. An example of a 3-cycle (BAC), witlG = A, x A». If we label the nodes such
B A that at the bottom layer, A, B and C are drawn through 1, 2 and 3 respectively, with the
‘hole’ at 4, pya = {1,2,3 and the connectivity drawn is¥2)(23)(31))e @lj).

For any graplG, let G denote the graph obtained by removing the nogeA? and the
bonds connected to it, ie&% ={1,2,...,n}\ {x} andAlx = AL\ G, 0|3, x) € AL}
Let G* (4, denote the graph obtained by removing the bondy), i.e., A° T =A% and

AG\ NG, = {(x, 0)). Recal, B, 1DGE, 1 = E, 1 ® H 1 Then, we have

Proposition 3.Let [AQ | = n;Vi.

(i) If G*(,) = G1U Gy, thenHL ! = ng_l X Hgi_l where the two factors act on the
n; — 1 andn,; — 1 nodes inG; and G, respectively.

(i) f GX = GLuG,u---, then3iG; D G/. Vi st A = {x} andN;AG = {0}, sit.
HE Y= HR ' > HEZ % -+, where HZ ™ acts onG; only.

Remark.Let us call graphs; that do not decompose in the sense of the previous proposition
unsplitting A simple example of an unsplitting graph is the closed chain graphWe
shall consider other examples below.

Definition 3. The graph®} (¢ < p <n—1 < 2p +¢) hasn nodes labelledl, 2, ..., n},
and bonds,
AL,

Pq

,n), (p+gq,n), (p,p+q+1D,

(see figure 6). Note tha”_, ; = A,.

Proposition 4.All unsplitting graphsG that are not closed chain graphs contéify, as a
subgraph for some positive integeprsq.

Proposition 5.For G = ©) , let g1 = {p +q +L1p+q+2....,n—1}
B={1,2,....,p—1landBzs:={p+1p+2,...,p+gq}, and lete; :={1,2,...,n}\
Bi.i =1,23. Then, fora; € o;,i = 1,2, 3, and definingﬁb{“"} c ol to be the words

of the formw,, as in (18), we hav@)a1 1) = Zp+as Pl = Zn » andd) =Zn—g-1.

ao{az}

Also ¢ (i} N (x) = x, V(p{a’ € CD{“’ yandx € g fori =1,2,3,

0l3{a3
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Figure 6. The graph®” = defined above.

p-q

Corollary 5.1.For G = 0%, « C A, |a| > 1, 3p2 € g such that forx, y € A \ a,

@y (x) =1 andgy (y) = n.

Proof. This is achieved by a sequence of words as in the proposition that ‘moves’ ane of
¥, while keeping the other fixed. Such a move is easiestdfo; andy € «j, i # j. If x,

y € «;, we first move both until only one of, y is in g; for some;. O

Corollary 5.2. For ® . as above, and > 4,
n-1 __ o
Hey o =S =1

w1 | S=1 for n odd (25)
©s0 | A(n — 1) for n even.

H”71

Qn ==
0,31

An -1 for »n odd
Sn-1) for n even.

Proof. By the same procedure as in the corollary above, it is possible to construct
ga{{::}} € Qm such thatfolG = @) _, , w{{s}}(x) =n-2 and<p{{,’1’}}(y) =n-1forx,y e A%\{n}
andG = 07 _30, 0 31, ¢ (x) =n —i,i =1,2,3 andx; € AY \ (n).

Thus, for®;_, , we can achieve arbitrary transpositions, which genesate— 1), and
for ®, 54, ©,_3; we can achieve all 3-cycles, generatiAgn — 1). However, by the
proposition above, we can also reali@é"f{}ul} =Z,44, Which for G = ©)_3,,©; 5, are
Z,_3 andZ,_,, respectively. Fon even (odd) these would give even (odd) permutations

for ©)_34, ©)_5 4, respectively. Hence the result. O

2.2. On constructing a partition basis fdvg

In any partition inS,,, perform the operations of ignoring either the elementsr the
elements;, for i € {1,2,...,n}. These may be viewed as sub-partitions of the noides ,
andi’, which we call ‘bottoms’ and ‘tops’, respectively. The elementsS§f, the partition

basis of Dg(Q) can be constructed diagrammatically, by figuring out the possible ‘top’ and
‘bottom’ configurations that can be achieved by drawing connectivitiegson A, for k

large, and the possible ways of gluing the top and bottom by the)#= i ‘propagating

lines’. The ways of joining bottom to top are dictated B§;, so the next step in this
program is to determine the set of allowed tops, the bottoms being isomorphic under up—
down transposition.

Proposition 6.For G = ©7 ., (¢ < p <n—1 < 2p + q), a partition basis element
z € A; (i <n)is also in the partition basiBiG of a Dg(Q)E;-module iff

(i) 3 at least one part af of the form (a’) (a singleton nodey € A%), or
G
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(i) in the sub-partition of; consisting of nodes', i € A%, one of the parts is of the
form (---a'b’---), where(a, b) € AL,
and the rest may be partitioned in any arbitrary way.
For all elements of the form (i), the configurations of ‘tops’Bf depend only om and
notonp,gq.

Proof. (Only if.) Every word except 1 inDg must begin with either/", j € A% or A"/,
(i, j) € AL.

(If.) (By construction of such g.) Without loss of generality, let the partition
have the primed nodes in a sub-partition of the sh@pd,, ..., [, 1) where the last part
is the singleton(a’) as in case (i). For case (i), all words may be written 4"z,
with z constructed as in case (). Fbr=1,2,...i, the parts arday’ a3’ ...a, 7 (k)),

wherea", j = 1,....1 are the primed nodes am:(k) is the image (underr € H.) of
the bottom nodek. For parts numberefl =i+ 1,i + 2, ..., r, the parts are of the form
(@ ay? ... "), the (r + Dyth part is the singletorta’), and the remaining parts consist
of smgleton bottom nodes.

For alle, B € AS such thata| = j = |B], let ®; := U, s®~. For a givenz, define the
words

o) e Dy A<k<r1<j<L -1
where
5@, j k)= L+ j —minG, k - 1)
andy; € ®;, by
(k)(a1)=n 1<k<r
@ty =1 Vi=12 ... —1 1<k<r
o’ (1) =n Vi=23..., -1 1<k<r (26)

o =n(j) k>
v =7(k) k=12,

where the domain and ranges of the elementégj,j,k), i);/. are nodes of5. Note that,
(k) indicates the positions of the bottom nodes ims required. Such a construction is
possible by corollary 4.1. The word

i r -1
<H[<H (p(k)Al nAn) i| l_[ |:< 1_[ gD;k)Al,nAw)Al~:|)_Ei
k=1 k=i+1L \ j=1
in D constructs the required (see figure 7). a

This proposition will then enable us to estimate the cardinality of the partition basis of
Dg(Q), which we need for the next subsection.

2.3. On locating the exceptional values of Q

The next stage in giving the generic structure is to give the dimensions of the irreducibles
and an explicit construction of a basis for each. kgtbe a primitive idempotent ofi/,,
i.e. such that

R, = Hée,, y € Fg
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is an irreducible representation &, (all of these are known, from [22] for example). Then
W, = Dg(E; ® €))

builds generic irreducibléV, .

In fact our present concern is not to determine the generic irreducible dimensions for a
given G, but to locate the exception@ values (by analogy with the Beraha numbers for
G = A, which is relevant for the two-dimensional case). To this end it is highly indicative
to proceed as follows.

We first decide on a sequence approaching the large graph limit (not the same as the
thermodynamic limit, see below). Thus, we take a sequence of graphs

GO =G/ : j=12..)

(with, say,A; x A,, (I, m large) at the ‘end’ if we were to consider graphs appropriate for
cubic lattice Potts models as in the next section) and then determine

dim(Dgo E"€,)

= lim n; = |AO(’>|
kg =% dim(Dgo-v E"Ve,) Lo
if it exists.
Since for theQ-state Potts model representation,
dim(ogw)
dim(pgi-v)
for any sequence such thmg(,)| = |A? cu-vl +m, m a positive integer, n‘kG( , > o™,

then Q is exceptional by the following argument [9]. Sindg® is a primitive idempotent
(i.e., EoDgEy = CEy), DgEy is indecomposable. [Dg(Q) were semisimpleDg Ey
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would be contained ipg with multiplicity 1 for all G. Thus, the evaluation of the case
= kgf f is sufficient for any sequenag. So, if dim(Dg Ep)> Q" (for Q an integer)
for n = |Ag], Q is exceptional. For example;, =4 whereA™) = {G/ = A;};>1, and
this signals the special nature of tlie= 1, 2, 3 state Potts models in two dimensions.
We can now consider the asymptotic growth rate of dimensions of the irreducible
representations. In particular, we estimate a lower bound on the dimension of the module

D¢ Eo.

Proposition 7.For G = ©), . (¢ < p < n — 2), and anyk € M, there exists a natural
numberM, such that d|mDGEo) > k forn > M.

Proof. Let b,, be the number of ways of pairing nodes (for some even numhbei). For

any node (say 1), its partner (in the partition of shé@f&?)) can be chosen im — 1 ways,

while the rest of the pairs can be choserjn , ways. This determines,, = (m — 1)b,,_»

for all evenm, with b, = 1. Thus for anyk € 9%, IM, a natural number, such that > k"

for m > M. From proposition 5, for any basis elementff for G = ©} ,, n — 1 primed
nodes may be partitioned in any arbitrary way. The number of such possibilities is clearly
larger thath,_; (where we have chosento be odd, without loss of generality). Therefore,

dim (D6 Eo) > k" O

Thus, for any integeQ andG of the type®), , the dimension oD¢ Ej is larger than
that of the Potts representatign; (> Q" for Q a positive integer).
We thus have

Proposition 8.Consider a sequenc&™ := {G“};>; of unsplitting graphs (except
GY) = A;). For any positive intege, 3 an integern; s.t. Vny > ni, Dguy iS Not
semisimple.

3. Cubic lattice Potts models:G = A; x A,,

This is the case we are most interested in, to which we shall apply the results obtained in
section 2.

Proposition 9.For G = A; x A,,, (I, m > 2), andn = Im,
() H: ' =A(n —1)
(i) H. =S(@),i <n—1.

Proof. (i) Forn even,G has a subgrap®;_;,, and forn odd, it has a subgrap®; , ;.
Recall corollary 4.2. (ii) It is easy to see thHg‘ and H(”),l 2 for n = 4 are isomorphic

to each other and téfg, . for n =3. Fori <n — 3 recall (24) 0

Recall that the representations Afj) are indexed by unordered pairs of partitions,
A+ j and its conjugate.’, for A # A". Fori =1’ = A, there are two non-isomorphic outer
automorphism-conjugate representations labelleshd A*.

Corollary 9.1.For G = A; x A,
Fg=U!Z g{xl—z}u{(x ML, MAFr =1L UM R = ().

is the index set for irreducible representations/gf(Q).
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Note that by filling in one of the diagonals of an elementary plaquet@ ef A; x A,
we obtain a graph which ha®;_,, as a subgraph. The index set for the irreducible
representations of the diagram algebras for such graphs@yith , subgraphs is the same
as that of the complete graph amnodes (see [20]).

SinceA; x A, D ©)  for somep, ¢, we have (from proposition 5),

Corollary 9.2.For G = A; x A,, (n = Im), a partition basis elemente A; i <n—1) is
also in the partition basiB[G of a Dg(Q)E;-module iff

(i) 3 at least one part of of the form (a’) (a singleton nodeg € A%), or

(ii) in the sub-partition of; consisting of nodes’, i € A2, one of the parts is of the form
(---a'b’ --.), where(a, b) € AL,

and the rest may be partitioned in any arbitrary way.

Also, sinceG = A; x A, is of the unsplitting type, we infer

Proposition 10.Consider a sequenag™ := {GY};cz,, whereGY) = A; x A, l,m >
1,Im = j. For any positive integeQ, 3 an integern; s.t. Vn, > ni, Dgep iS not
semisimple.

4. Discussion

For G = A, x A, for instance, it might have naively been expected that for largee
results of the familiarA; case might be approached. However, instead of the known growth
rate of dimensions, i.e. 4, we get an unboundedly large number. This discrepancy might
be attributed to the lengttk, of the graphA; in the transfer (‘time-like’) direction of the
lattice L = G x A, on which the partition function is evaluated. The connectivities of nodes
are achieved involve ‘permuting the nodes’, i.e. the action of (20), where each shift (18)
can only be realized fok > p;. A restriction of the maximunt allowed will obviously
reduce the dimensions and their growth rege This is clearly necessary to define the true
thermodynamic limit, where the volume has to increase in a specified fashion, keeping the
ratios of lengths in all the directions of the lattice, fixed to some finite value, unlike

in the definition ofxs, where the size of th& was increased independent iof In the
two-dimensional case, the connectivities can all be achievedl enA, x A, for k ~ n,

and the problem does not arise. Thus, it might be useful to define a certain ‘cut-off’ height
k of the representations dPs(Q) to narrow in on the physically relevant sectors of the
representation theory.

We have indicated that for the smallest deviations away from chain graphs, e.g.
®,_, the diagram algebra is too large to carry directly useful physical information.
Suitable quotients have to be implemented to reduce the size of the representations and an
appropriately quotiented algebra would then be the analogous ‘generic’ algebra for the cubic
lattice models. The special values @ffor which the algebra ceases to be semisimple is the
obvious place to look for the quotient relations that are relevant for the Potts representation
which is defined for integer values ¢f. These integers are certainly a subset of the special
points where the algebra ceases to be semisimple, as we have shown. We expect that
the techniques outlined in the appendix can be extended to obtain the degeneracies of the
cubic lattice Potts spectrum, which we would like to report in the future. We have also
undertaken preliminary calculations on the location of otfevalues for whichDg(Q)
becomes non-semisimple far = A; x A,,, and so far found only rationals. Further studies
are in progress.
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Appendix

Proposition 11.As left Dg(Q) modules,P, E; = D¢ E; @ RY modulo Dg E;_1 D¢ for any
G, |G| = n, whereR¥ is either empty or a direct sum 6f copies of the trivialt;;-modules,
Xays () Fi, RS =6, xu). Further, fora i € {0,1,2,...,n}, n = |AY],

DGW)\@GiX(i) VlE{l,Z,,I’l—Z}
W f@@,‘ i )\,,)\./'_i:n_l,
Reds p V=@ f {7 =0x® - (A1)
¢ DGWA.@DGW;@GiX(i) forhr=AFi=n-1
@O x i) for i=n.

Proof A/ P,E; = A*'P,E; = 0 mod Dg E;, thereforeDsx = 1x mod D; E;Vx € P, E;.
Hg acts trivially. Forx - n — 1, the labels of the representationsRf Q) and Ds(Q) are
those ofS(n — 1) andA(n — 1), respectively, and R§$~7) must be invoked. O

To characterize the generic structure of the algebra completely, it is necessary to
determine the dimensions of its irreducible representations. Also, it is useful to characterize
the inclusion of algebras, while approaching the large graph limit described above, in order
to identify the subspaces that carry the information relevant for a physical interpretation.
A preliminary step would be to determine how, f&f c G, Dg(Q)-modules split up as
Dy (0)-submodules. Henceforth, we shall denote a kReftnodule M as M.

Proposition 12.ForG = A; x A,, andG D H = A;_1 X A,:

DGE; =@, (DyEi.; ® R
as left Dy(Q) modules, wherer’,” is either empty or:.;x¢+,, where6, is the
multiplicity of the trivial H%-module, x), (k) F k.

Proof. Letm :={n—m+1n—m+2,...,nyandp, :={1,2,...,n—m}. If w e DgE;
s.t. none of the parts ofv is of the form (...k"...I"..)) for X' € p, and!’ € m,
Dyw = @] Dy E,;_;. Each summand indexed by denotes the number of parts of
w which contain only primed nodes.

Similarly, if the nodes ofm are in somej < m parts with nodes ofp,,, we get
Dyw = &L oDyEim-, where once again, counts the number of parts af containing
only primed nodes.

As before, forx € DG E;, Dyx = 1x mod Dg E;, and H, thus acts trivially. O

Let p, W, denote an irreducible lefDs(Q) module,y € T'c. We are interested in the
restriction Regi ps W,. Note the following inclusion of algebras:

Dg(Q) C Py,
U U
Dp(Q) C Py
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and consider the corresponding restrictions of modules:

Re? pVi = ®ubiy Vi h€Lpo,  peLlyg

Reg? p, Vi =@, 8y p, Wy he Lo y eTg "2
Re%’: Py Ve = @nhyy 0, Wy A€ ‘C\A%I nely

Reﬁi bWy = @umyy b, Wy y €lg nely

where Pg 1= P ;0 and (recall) the index sets labelling the irreducible representations of
P,(Q) and Dg(Q) are L, andI'g, respectively.

Let dim(p, W,)) be denoted/, and dim{, W,) := d,. Since the representations have
already been assigned an index set, it is sufficient to determine the inclusion thétrix
whose entries are the multiplicities, , in

dy, = Z myydy
1

in order to complete the study of the generic irreducibles.

To obtain this, recall that Ré§ is known, i.e. the coefficient§,, € E™, where the
inclusion matrixZ encodes the restriction informatiaP,_;1(Q) c P,(Q) has been given
in [19] andm = |A%| — |AY|. For a (left) P,(Q)-module, p, V; A i,

pn71V)Lf i—14)M <
Re :—1 an)h:@ Pll*1Vk®Pn—1V)\/ i =\ ><A
Pn,lvk’ i+14M > A

where 1 > p denotes the ‘removal of a box’ frorh to produceu, A < u, denotes the
‘addition of a box’ toA to produceu, andi ><1 u means that we first remove a box frgm
to obtain some (say), and then add a box toto obtaini. Addition and removal of boxes
correspond to the induction and restriction rules for symmetric group representations, called
the Pieri (or Littlewood—Richardson) rules. Also note that in the abgveV, = p V.

This is the key piece of information which, together with proposition (A1), will indicate
the way to obtainn,,. Let us evaluate R(fi,% in two ways, corresponding to the paths in
the diagram indicating the inclusion of algebras above (restrictions are transitive).

Reg’ = Reg°Reg? = Reg’ Reg’ .
Thus, from one path we get,

Reg? p, Vi = Reg! (Reg? p Vi) = @y &y &xhiy b, Wy (A3)
while from the other,
Re%i; P Vi = Re£2 (Reﬁ; Pg VA) = ®y &, &uyMyn 0y Wy . (A4)

Let the inclusion matrice&; and Y/ encode the restriction information F@é% and
Res/, with matrix elements(=;),, = s, and (Y/)q» = u?, respectively. Then,
the restriction information between representations that are not among the list of one-
dimensional representationg (), is extracted from the above.

EyEhk<n—1 nkFl<n—-m-1
(n—m—1) .
My = XM:EWLSM ybk<n—-1 unkl=n—-m-1

U(n—l,n—m—l)

i yFn—1nkn—m-—1.
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In the above, we have used,, instead ofm,, to indicate thatsu,, does not give the
multiplicities 6; of the one-dimensional representationg,. The number of sucly, is
not known in general. Diagrammatically their determination is a combinatorial problem of
enumerating the number of ‘top’ configurations that are characterized by corollary 9.2.

We have constructed an algorithm for their enumeration by using recurrence relations
for G = A; x A,, but we have not been able to solve it in closed form. For arbitrary
rectangular graphs, the combinatorics is much more complicated.
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