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Abstract. We consider diagram algebras,D(G)(Q) (generalized Temperley–Lieb algebras)
defined for a large class of graphsG, including those of relevance for cubic lattice Potts models,
and study their structure for genericQ. We find that these algebras are too large to play the
precisely analogous role in three dimensions to that played by the Temperley–Lieb algebras for
genericQ in the planar case. We outline measures to extract the quotient algebra that would
illuminate the physics of three-dimensional Potts models.

lines

1. Introduction

With the benefit of hindsight it is striking how easy it might have been, 15–20 years ago,
to identify roots of unity as the values ofq that were special for the description of the
physics ofQ = (q+ q−1)2 state Potts models in two dimensions, and related spin chains in
one dimension. It is the work of a few lines to derive these as the exceptional cases using
the Temperley–Lieb algebra introduced by Temperley and Lieb (1971) [1] (see [9]). This
could have been done before many of the models were solved. Only the interpretation of
this result might have puzzled the early ‘algebraic physicist’. Of course, this is not the way
things happened. The location of the special points is revealed in thedetailsof the solution
of the models [2, 3, 7], and it was only after the solution of the models that the significance
of the special points and their relation to the cataloguing of models into universality classes
was appreciated.

In a sense, we find ourselves heading down the same path now for three and higher
dimensional models. There has been some very impressive work done on models whose
Boltzmann weights satisfy the tetrahedron equations [8], but that is not the route we follow
here. In [20] it was suggested that the diagram algebrasDG(Q) (defined below) for some
sequence of graphsG(−) = {G(1), G(2), . . .} would play the role of the Temperley–Lieb
algebra for higher dimensions (the Temperley–Lieb algebra is the sequence of diagram
algebras withG(j) = Aj , whereAj is thej -node chain graph). In this paper we determine
the structure ofDG(Q) for enough graphsG to show that a direct analogy with two
dimensions is too simplistic in general, and suggest a resolution.

The paper is structured in the following way. We introduce theQ-state Potts model on
any lattice, and point out the relation between the transfer matrix of the two-dimensional
model and the Temperley–Lieb (TL) algebra. Since we take the algebraic route in this
paper, we then state the specific link between representation theory (the index set for distinct
irreducible representations) and physics (primary fields in the two-dimensional conformal
field theory (CFT)) that we would like to examine in the higher dimensional context. Namely,
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264 S Dasmahapatra and P Martin

when the index set isfinite, the correspondingCFT is minimal. In two dimensions, the index
set is finite at the special values ofQ called Beraha numbers, which are also the values at
which theTL algebras defined for a sequence of chain graphs of increasing length become
non-semisimple beyond some length. One of our objectives in this paper is to locate the
correspondingQ-values at which our candidate algebraDG(Q) becomes non-semisimple
in an analogous way.

We define the diagram algebra as a subalgebra of the partition algebra [19] in the last
part of this section. The basis of the defining representation of the diagram algebra is taken
from the set of partitions of the nodes of two copies of a graphG, called ‘top’ and ‘bottom’.
Multiplication in the algebra involves stacking one such top and bottom over another, and
keeping track of the resulting partitions by transitivity (see figure 1). In section 2, we tackle
the problem of classifying the irreducible representations ofDG(Q) for genericQ. This is
carried out in two steps—first by noting the number of parts with both top and bottom nodes
as above (called the number of ‘propagating lines’) and then by the permutations of these
lines allowed on a given graphG. We do this for a large class of graphs and, in particular,
for a class of graphs which we callunsplitting(see proposition 3 and the remark following
it). We also give necessary and sufficient conditions for a set of partitions to be a basis for
these irreducibles in proposition 6. Using this key result, we prove in proposition 7 that the
algebras defined for a sequence of unsplitting graphs ceases to be semi-simple for at least all
integer values ofQ. In section 4, we apply the above results for the particular example of
an unsplitting graph that is relevant for building the transfer matrix of the three-dimensional
Potts model. We discuss the implication of these results next. The appendix lays out the
preliminary steps towards the description of the Bratteli diagram (or the inclusion matrix)
for the restriction of modules for the generically semi-simple algebrasDH ⊂ DG for graphs
G,H andH ⊂ G.

1.1. Basic definitions

For any simple, unoriented graphL, and natural numberQ, the partition function of the
Q-state Potts model [4] on the graphL is

Z(L) =
∑

σi∈{1,2,...,Q}
∀i∈30

L

exp

β ∑
(i,j)∈31

L

δσiσj

 (1)

where30
L denotes the set of nodes ofL, and31

L, the set of its edges.
Recall that for graphsG andH then G×H is a graph such that

30
G×H = 30

G ×30
H (2)

and

(
(i, j), (k, l)

) ∈ 31
G×H if

{
(i, k) ∈ 31

G and j = l or

(j, l) ∈ 31
H and i = k .

(3)

Let Ât be thet-node closed chain graph. Then for exampleAl × Am × Ât would be the
cubic lattice with periodicity in one direction. For anyG the partition function

Z(G× Ât ) = Tr
((

τG
)t)

(4)
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whereτG is the (G shaped layer) transfer matrix defined as

τG =
∏
i∈30

G

(
(eβ − 1)I +

√
QUi·

) ∏
(i,j)∈31

G

(
I + (eβ − 1)√

Q
Ui,j

)
. (5)

Here

I = IQ ⊗ IQ ⊗ . . .⊗ IQ (6)

(one factor for each node ofG, each factor aQ×Q unit matrix)

Ui· = 1√
Q

(
IQ ⊗ IQ ⊗ . . .⊗ M︸︷︷︸

ith

⊗ . . . IQ
)

(i ∈ 30
G) (7)

whereM is theQ ×Q matrix with all entries 1, in theith position (note that writing the
factors in a row implies a total order on30

G—this is physically misleading for generalG
and can be chosen arbitrarily, cf the two-dimensional case [2]) and

Ui,j =
√
Q

(
IQ ⊗ IQ ⊗ . . .⊗ N︸︷︷︸

ith⊗j th

⊗ . . . IQ
) (

(i, j) ∈ 31
G

)
(8)

whereN is theQ2 × Q2 diagonal matrix acting on theith andj th subspaces (and note
that j is not necessarily adjacent toi in a given ordering) with index set{1, 2, . . . ,Q} ×
{1, 2, . . . ,Q}, and

N(i,j),(i,j) =
{

1 if i = j

0 otherwise
(9)

(see [1, 2, 23]).
Note that these matrices obey

U2
i· =

√
QUi· U2

i,j =
√
QUi,j Ui·Ui,jUi· = Ui· Ui,jUi·Ui,j = Ui,j (10)

[Ui·, Uj ·] = [Ui·, Uj,k] = [Ui,j , Uk,l ] = 0 i 6= j, k . (11)

Recall that forG = An the graphL = G × Ât is the square lattice on a cylinder,
and these matrices give a representation of the Temperley–Lieb algebra [1]. It is known
that this representation is faithful except at the Beraha-type numbers [16]Q = 4 cos2πp/b
(p, b integers), where it is faithful only on the unitarizable quotient [15]. Also, for otherQ

values the number of distinct irreducible representations in this Potts representation grows
unboundedly withn, whereas forp, b integer it is finite and fixed byb (à la primary fields
in rational conformal field theories [11]). The models corresponding to these Beraha-type
numbers have as massless Euclidean field theory limits the minimal models of conformal
field theory. Forp = 1, these lattice models are in the same universality class as theABF

models [12, 5, 14, 6] whose corresponding conformal field theories belong to the unitary
series of [13] withc = 1 − 6/[b(b − 1)].

In this paper we address the question of what is the appropriate abstract algebra, in the
same sense as above, for the arbitrary sequenceG(−). In [20], it has been noted that the
algebra with generators and relations simply as in equation (11) (the full Temperley–Lieb
algebra) is too big, as the Potts representation is then never faithful for non-chain graphs.
Instead, we shall focus on the following finite dimensional quotients. In order to define
these quotients, it is useful to recall the definition of the partition algebraPn = Pn(Q)

[19, 20].
Let S2n be the set of partitions of the set{1, 2, . . . , n,1′, 2′, . . . , n′}. The C-linear

extension of the product defined in figure 1 on the vector space with basisS2n gives the
partition algebra,Pn(Q).
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Figure 1. The top diagram isa, the one in the middleb, and the one
at the bottom is the producta ◦ b. Trace the connectivities from bottom
to top, and for each discarded part from the middle, pick up a factor of
Q to obtaina ◦ b.

The diagram algebra,DG(Q), for a graphG is defined as the subalgebra of the partition
algebra with generators:

1 = (
(11′)(22′) . . . (nn′)

)
Ai· = (

(11′)(22′) . . . (i)(i ′) . . . (nn′)
) ∀i ∈ 30

G (12)

Ai,j = (
(11′)(22′) . . . (i j i ′j ′) . . . (nn′)

) ∀(i, j) ∈ 31
G .

Note that 1ij = (
(11′)(22′) . . . (ij ′) . . . (j i ′) . . . (nn′)

) ∈ Pn(Q), is not in DG(Q).
The diagram algebra may be also be thought of (visualized) onG × Ak (k large) as

the restriction ofPn(Q) to partitions achievable as connectivities (i.e. a set of mutually
non-intersecting trees, cf [10]) between the nodes of the bottom layer (the nodes(i,1) to
be called i̧ ∀i ∈ 30

G), and those of the top layer (the nodes(i, k) to be calledi ′∀i ∈ 30
G).

Note that, withV = CQ,

ρG : DG(Q) −→ End(V ⊗|30
G|) (13)

given by

ρG(A
i·) =

√
QUi· ρG(A

i,j ) = 1√
Q
Ui,j (14)

is a representation of the diagram algebra called the Potts representation (equations (7), (8)).
The Potts representation is generically faithful forG = An, and for this reason, here we

try DG(Q) as a candidate for the appropriate generalization of the Temperley–Lieb algebra
for arbitrary graphG. Note, in particular, thatDAn(Q) is isomorphic to the Temperley–Lieb
algebra for anyQ, including non-integer values.

The partition functionZ(L) may be computed working inDG(Q) instead of in the
defining Potts representation [2], as in the two-dimensional case, where theDAn(Q)

calculation is that of the square lattice dichromatic polynomial [3, 10].
In the two-dimensional case the exceptional models may be identified directly at the

level of algebra by finding theQ values for which the structure of the Temperley–Lieb
algebra departs from the generic semi-simple structure. Our idea is that the departures from
generic behaviour would be important for arbitraryG. The structure ofDG(Q) is important
‘physically’, since it may be used to characterize the spectrum of the transfer matrix,τG.
Thus we proceed to analyse the structure ofDG(Q). This is already known for someG;
in particular, forG = An and forG = Kn, the complete graph onn nodes [19]. In this
paper we consider graphs appropriate for higher dimensional Potts models and dichromatic
polynomials, including sequences appropriate for the physically crucial cubic lattice Potts
models, and the bi-plane lattices to which recent ideas in high-Tc superconductivity have
drawn attention [17].
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2. Generic structure of DG(Q)

Mathematically, the first step in determining the structure (representation theory) of an
algebra is generally to label the irreducible representations. In what follows we take
n = |30

G|. The irreducible representations ofPn(Q) are labelled by

Ln = {λ ` i : i = 0, 1, 2, . . . , n}
and sinceDG(Q) ⊂ Pn(Q) all the irreducibles must be somehow contained in the
irreducibles ofPn(Q).

ConsiderPn(Q) as aDG(Q) module. Clearly anyPn(Q) module is also aDG(Q)

module. NowPn(Q) has been filtered into invariant subspaces with bases

Bi = {x ∈ S2n|#p(x) 6 i}
where #p(x) is the number of parts ofx containing both primed and unprimed nodes, called
the ‘propagating number’ ofx.

If we define

Ei
(n) =

n∏
j=i+1

(
Aj ·

Q

)
thenC-span(Bi ) = PnEiPn. For a givenn, we drop the superscript(n) and writeEi . Note
that #p(Ei ) = i and fora, b ∈ S2n,

#p(ab) 6 min(#p(a), #p(b))

and we ignore elements ofC in evaluating #p(z) ∀z ∈ Pn(Q). Thus

Pn[i] = PnEiPn/PnEi−1Pn

is aPn(Q) module with basisBi \ Bi−1. Note that in the diagrammatic realization of the
left action ofDG(Q) on Pn[i] the ‘bottom’ of eachx ∈ Bi \ Bi−1 (i.e. the connectivities
of the unprimed nodes of anyx ∈ S2n) remains unchanged. That is, all elements with the
same bottom form a submodule.

For example,1i := PnEi (modPnEi−1Pn) is one of the leftPn submodules ofPn[i],
andPn[i] may be decomposed into submodules all of which are isomorphic. Note that1i

has a basis the set of partitions which have each unprimed node in a different part, the last
n− i nodes singletons (i.e. in parts on their own), the others connected to primed nodes.

In fact, as a leftDG(Q) module1i breaks asDG(Q)Ei ⊕Ri whereRi is either empty
or a direct sum of one-dimensional modules (see the appendix), so we need only focus on
DGEi modDGEi−1DG.

The final piece of the jigsaw forPn(Q) is to note thatPnEi is a projective rightS(i)
module (i.e. a direct summand of a direct sum of copies of the regular representation of
the symmetric group [18]) where the action is to permute the firsti (unprimed) nodes. For
example, see figure 2. ThusPnEi (mod) breaks up into simple modules indexed byλ ` i

(from S(i) representation theory [21]).
For DG(Q), however, the picture is more complicated, sinceDGEi is not always

closed under the right action ofS(i). For example, whereasPn(Q)En
∼= S(n) modulo

Pn(Q)En−1Pn(Q), we haveDGEn = CEn = C · 1 modDGEn−1DG for anyG. To see
this note that withn propagating lines from bottom to top ofG×Ak (k large) there is only
one possibility, as depicted in figure 3. Our problem is thus reduced to determining the
maximum subgroupHi

G ⊂ S(i) for whichDGEi (modDGEi−1DG) is a right module. In
general, fori < n, the situation depends onG.
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Figure 2. The right action of the permutation group
(depicted in the box) is, diagrammatically, the action
from below.

Figure 3. There is no space for lateral motion if all
of the nodes ofG (the hexagon) are propagating. The
propagating lines are drawn with double lines.

Before actually determiningHi
G, let us first explicitly construct words in the algebra

that would implement the group action. As is clear from figure 3, one or more nodes ofG

need to be disconnected to allow for walks onG × Ak to realize any permutations of the
nodes (except for the identity permutation as in figure 3). Also, since there is no unique,
or natural ordering of the nodes ofG, we need to determine whetherHi

G depends on the
choice of the nodes disconnected byEi .

For any subset,s of {1, 2, . . . , n}, let ps be the set difference{1, 2, . . . , n} \ s, and
E{ps } = ∏

j∈s(A
j ·/Q). For example, fori = {i + 1, i + 2, . . . , n},

pi = {1, 2, . . . , i} and E{pi } =
n∏

j=i+1

(
Aj ·

Q

)
= Ei . (15)

Definition 1. The partition basis ofDG(Q), denoted bySG
2n is S2n ∩ DG. Also, set

Bi
G := Bi ∩DG.

Definition 2. Let s, t ⊂ {1, 2, . . . , n}, s.t. |s| = |t |. Then

8t
s := {ϕts |ϕts = E{pt }XE{ps } ∀X ∈ SG

2n s.t. #p(E{pt }XE{ps }) = |ps |} . (16)

These elements of (16) may be interpreted as bijections,ϕts : ps → pt . Note, in
particular, that8s

s ⊆ S(ps)E{ps }.
Let δ = s4 t = (s \ t)∪ (t \ s), the symmetric difference of setss, t , with |δ| = 2d, i.e.

d elements of then − i elements ofs are distinct from those oft . Then∃ partitions ofδ
of shape 2d , i.e. of the form(

(δ1δ
∗
1)(δ2δ

∗
2) . . . (δdδ

∗
d)

)
(17)

where the unstarred nodes ofδ ∈ s and the starred ones int . Consider chain subgraphs,
A(i)µi , i = 1, . . . , d of the connected graphG, with nodes labelledx(µi)j , j = 1, 2 . . . , µi such
that the first node ofA(i)µi is x(µi)1 = δi and theµi th, x(µi)µi

= δ∗
i . Let us construct wordsω

A
(i)
µi

of the form

ω
A
(i)
µi

=
µi−2∏
j=0

(
A
x
(µi )

µi−j · Ax
(µi )

µi−j ,x
(µi )

µi−j−1
)
Ax

(µi )

1 · . (18)
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Figure 4. The element of the algebra shifting the ‘hole’ fromδi to δ∗i . Note the
minimum height required to achieve this connectivity is of the order of the distance
|δi − δ∗i |.

s.t. ω
A
(i)
µi

achieves the connectivity which differs from the unit in(· · · (̧ x(µi)1 )(̧ x
(µi)

2 x
(µi)

1

′
)(̧ x

(µi)

3 x
(µi)

2

′
) . . . (̧ x(µi)µi

x
(µi)

µi−1

′
)(x(µi)µi

′
) . . .

) ∈ DG(Q) (19)

on the sublatticeA(i)µi × Ak, (k > µi), where (as before)(x(µi)j , 1) = ¸x(µi)j and
(x
(µi)

j , k) = x
(µi)

j

′
(see figure 4).

It is useful to view the element of the algebra as one that pushes a ‘hole’ from its
location ins to one int . The equivalence relation that defines the algebraDG(Q) ⊂ Pn(Q)

implies that

ω{µi } =
d∏
i=1

ωAµi ∈ 8t
s (20)

independent of the choice of graphsA(i)µi connecting the nodes ofδ. Thus,

Proposition 1.

DGE{ps }DG = DGEiDG ∀s ⊂ {1, 2, . . . , n} s.t. |s| = n− i . (21)

The different choices of pairing the starred and unstarred nodes ofδ give different
bijectionsϕts ∈ 8t

s . Let Hps
G := 8s

s . We then have

Proposition 2.For any fixed elementϕst ∈ 8s
t , ϕ

s
t 8

t
s = H

ps
G andHps

G = H
pt
G if |s| = |t |.

Proof. For setss, t, r of the same cardinality, these ‘bijections’ obey

ρrt ◦ ϕts ∈ 8r
s ∀ρrt ∈ 8r

t and ϕts ∈ 8t
s . (22)

Therefore,

8r
t 8

t
s ⊆ 8r

s ⇒ |8r
t | 6 |8r

s | and |8t
s | 6 |8r

s | ⇒ |8r
s | = |8u

t | (23)

for any r, s, t, u ∈ {1, 2, . . . , n} with |r| = |s| = |t | = |u|.
In particular, |8s

t | = |8s
s | and ϕst 8

t
s ⊆ 8s

s ⇒ ϕst 8
t
s = 8s

s , for a fixedϕst 8
s
t . Also,

ρts8
s
sϕ
s
t = 8t

t . This implies that8s
s
∼= 8t

t and depends only on the cardinality,|ps |. �
Corollary 2.1.

DGE{ps } ∼= DGEi and EiDGEi
∼= Ei ⊗Hi

G mod DGEi−1DG (24)

whereHi−1
G is no smaller than the maximal subgroup ofS(i − 1) contained inHi

G (so that
in particular if anyHi

G = S(i) thenHj

G = S(j) ∀j < i).

Hence,

Theorem 1.Let 0iG, 0G be index sets for irreducible representations ofHi
G andDG(Q)

respectively. Then

0G = ∪i0iG .
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2.1. How to computeHi
G

For an arbitrary graphG, |30
G| = n, andα ∈ 30

G, consider closed chain subgraphs,
Âp+1 ⊂ G with α ∈ 30

Âp+1
. Setting d = 1, x(µi)1 = x(µi)µi

and µi = p + 2 in (20), we

note8{α}
{α} containsZp. By pushing the hole around, by (18), so as to lie on other closed

chain subgraphs, the set of thesep-cycles generatesHn−1
G .

Figure 5. An example of a 3-cycle (BAC), withG = A2 × A2. If we label the nodes such
that at the bottom layer, A, B and C are drawn through 1, 2 and 3 respectively, with the
‘hole’ at 4, p{4} = {1,2,3} and the connectivity drawn is ((¸12′)(2̧3′)(3̧1′))∈ 8{4}

{4}.

For any graphG, letG×
x denote the graph obtained by removing the nodex ∈ 30

G and the
bonds connected to it, i.e.30

G×
x

= {1, 2, . . . , n} \ {x} and31
G×
x

= 31
G \ {(i, x)|(i, x) ∈ 31

G}.
Let G×

(x,y) denote the graph obtained by removing the bond(x, y), i.e.,30
G×

(x,y)
= 30

G and

31
G \31

G×
(x,y)

= {(x, y)}. Recall,En−1DGEn−1
∼= En−1 ⊗Hn−1

G . Then, we have

Proposition 3.Let |30
Gi

| = ni∀i.
(i) If G×

(x,y) = G1 t G2, thenHn−1
G = H

n1−1
G1

× H
n2−1
G2

where the two factors act on the
n1 − 1 andn2 − 1 nodes inG1 andG2, respectively.
(ii) If G×

x = G′
1 t G′

2 t · · ·, then ∃Gi ⊃ G′
i ∀i s.t. ∩i30

Gi
= {x} and ∩i31

Gi
= {∅}, s.t.

Hn−1
G = H

n1−1
G1

×H
n2−1
G2

× · · ·, whereHni−1
Gi

acts onGi only.

Remark.Let us call graphsG that do not decompose in the sense of the previous proposition
unsplitting. A simple example of an unsplitting graph is the closed chain graphÂn. We
shall consider other examples below.

Definition 3. The graph2n
p,q(q < p 6 n− 1< 2p+ q) hasn nodes labelled{1, 2, . . . , n},

and bonds,

31
2np,q

:=
{
(1, n), (p + q, n), (p, p + q + 1),
(i i + 1); i = {1, 2, . . . , n− 1} \ {p + q} .

}
(see figure 6). Note that2n

n−1,0 = Ân.

Proposition 4.All unsplitting graphsG that are not closed chain graphs contain2n
p,q as a

subgraph for some positive integersp, q.

Proposition 5.For G = 2n
p,q , let β1 := {p + q + 1, p + q + 2, . . . , n − 1},

β2 := {1, 2, . . . , p − 1} andβ3 := {p + 1, p + 2, . . . , p + q}, and letαi := {1, 2, . . . , n} \
βi, i = 1, 2, 3. Then, forai ∈ αi, i = 1, 2, 3, and defining8{ai }

αi {ai } ⊆ 8
{ai }
{ai } to be the words

of the formωAαi as in (18), we have8{a1}
α1{a1}

∼= Zp+q , 8{a2}
α2{a2}

∼= Zn−p and8{a3}
α3{a3}

∼= Zn−q−1.

Also ϕ{ai }
{ai }(x) = x, ∀ϕ{ai }

{ai } ∈ 8{ai }
αi {ai } andx ∈ βi for i = 1, 2, 3.
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Figure 6. The graph2np,q defined above.

Corollary 5.1. For G = 2n
p,q , α ⊂ 30

G, |α| > 1, ∃ϕαα ∈ 8α
α such that forx, y ∈ 30

G \ α,
ϕαα (x) = 1 andϕαα (y) = n.

Proof. This is achieved by a sequence of words as in the proposition that ‘moves’ one ofx,
y, while keeping the other fixed. Such a move is easiest ifx ∈ αi andy ∈ αj , i 6= j . If x,
y ∈ αi , we first move both until only one ofx, y is in βj for somej . �
Corollary 5.2. For2n

p,q as above, andn > 4,

Hn−1
2nn−2,0

= S(n− 1)

Hn−1
2nn−3,0

=
{

S(n− 1) for n odd

A(n− 1) for n even .
(25)

Hn−1
2nn−3,1

=
{

A(n− 1) for n odd

S(n− 1) for n even .

Proof. By the same procedure as in the corollary above, it is possible to construct
ϕ

{n}
{n} ∈ 8{n}

{n}, such that forG = 2n
n−2,0, ϕ{n}

{n}(x) = n−2 andϕ{n}
{n}(y) = n−1 for x, y ∈ 30

G\{n}
andG = 2n

n−3,0,2
n
n−3,1, ϕ{n}

{n}(xi) = n− i, i = 1, 2, 3 andxi ∈ 30
G \ {n}.

Thus, for2n
n−2,0 we can achieve arbitrary transpositions, which generateS(n− 1), and

for 2n
n−3,0,2

n
n−3,1 we can achieve all 3-cycles, generatingA(n − 1). However, by the

proposition above, we can also realize8{a1}
α1{a1}

∼= Zp+q , which forG = 2n
n−3,0,2

n
n−3,1 are

Zn−3 and Zn−2, respectively. Forn even (odd) these would give even (odd) permutations
for 2n

n−3,0,2
n
n−3,1, respectively. Hence the result. �

2.2. On constructing a partition basis forDG

In any partition inS2n, perform the operations of ignoring either the elementsi ′ or the
elements i̧ for i ∈ {1, 2, . . . , n}. These may be viewed as sub-partitions of the nodes ¸i

and i ′, which we call ‘bottoms’ and ‘tops’, respectively. The elements ofSG
2n, the partition

basis ofDG(Q) can be constructed diagrammatically, by figuring out the possible ‘top’ and
‘bottom’ configurations that can be achieved by drawing connectivities onG × Ak for k
large, and the possible ways of gluing the top and bottom by the #p(z) = i ‘propagating
lines’. The ways of joining bottom to top are dictated byHi

G, so the next step in this
program is to determine the set of allowed tops, the bottoms being isomorphic under up–
down transposition.

Proposition 6.For G = 2n
p,q, (q 6 p < n − 1 < 2p + q), a partition basis element

z ∈ 1i (i < n) is also in the partition basisBG
i of aDG(Q)Ei-module iff

(i) ∃ at least one part ofz of the form(a′) (a singleton node,a ∈ 30
G), or
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(ii) in the sub-partition ofz consisting of nodesi ′, i ∈ 30
G, one of the parts is of the

form (· · · a′b′ · · ·), where(a, b) ∈ 31
G,

and the rest may be partitioned in any arbitrary way.
For all elements of the form (i), the configurations of ‘tops’ inBG

i depend only onn and
not onp, q.

Proof. (Only if.) Every word except 1 inDG must begin with eitherAj ·, j ∈ 30
G or Ai,j ,

(i, j) ∈ 31
G.

(If.) (By construction of such az.) Without loss of generality, let the partitionz
have the primed nodes in a sub-partition of the shape(l1, l2, . . . , lr , 1) where the last part
is the singleton(a′) as in case (i). For case (ii), all words may be written asAa,bz,
with z constructed as in case (i). Fork = 1, 2, . . . i, the parts are(a(k)1 a

(k)

2 . . . a
(k)
lk
π(̧ k)),

wherea(k)j , j = 1, . . . , lk are the primed nodes andπ(̧ k) is the image (underπ ∈ Hi
G) of

the bottom nodeķ. For parts numberedk = i + 1, i + 2, . . . , r, the parts are of the form
(a
(k)

1 a
(k)

2 . . . a
(k)
lk
), the (r + 1)th part is the singleton(a′), and the remaining parts consist

of singleton bottom nodes.
For all α, β ∈ 30

G such that|α| = j = |β|, let8j := ∪α,β8β
α . For a givenz, define the

words

ϕ
(k)
j ∈ 8̄s(z,j,k) (1 6 k 6 r,1 6 j 6 lk − 1)

where

s(z, j, k) =
k−1∑
u=1

lu + j − min(i, k − 1)

andψj ∈ 8̄lj by

ϕ
(k)

1 (a1) = n 1 6 k 6 r

ϕ
(k)
j (a

(k)

j+1) = 1 ∀j = 1, 2, . . . lk − 1 1 6 k 6 r

ϕ
(k)
j (1) = n ∀j = 2, 3, . . . , lk − 1 1 6 k 6 r (26)

ϕ
(k)
j (π(j)) = π(̧ j) k > j

ψk(1) = π(̧ k) k = 1, 2, . . . , i

where the domain and ranges of the elements of8̄s(z,j,k), 8̄lj are nodes ofG. Note that,
π(̧ k) indicates the positions of the bottom nodes inz as required. Such a construction is
possible by corollary 4.1. The word

Aa·
( i∏
k=1

[(lk−1∏
j=1

ϕ
(k)
j A1,nAn·

)
ψk

] r∏
k=i+1

[( lk−1∏
j=1

ϕ
(k)
j A1,nAn·

)
A1·

])
Ei

in DG constructs the requiredz (see figure 7). �
This proposition will then enable us to estimate the cardinality of the partition basis of

DG(Q), which we need for the next subsection.

2.3. On locating the exceptional values of Q

The next stage in giving the generic structure is to give the dimensions of the irreducibles
and an explicit construction of a basis for each. Letεγ be a primitive idempotent ofHi

G,
i.e. such that

Rγ = Hi
Gεγ γ ∈ 0iG
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Figure 7. The figure depicts how the wordA4·
(
∏3
j=1 ϕ

(1)
j A12,1A12·) ψ1 builds the partition ((8′

9′ 10′ 11′ 3̧)(12′ 6̧) (7′ 1̧)(6′ 2̧)(5′ 5̧)(3′ 1̧2)(2′
4̧)(1′ 7̧)(4′)(8̧)(9̧)(1̧0)(1̧1) ) on the lattice G×Ak ,
whereG is of the type2n=12

p,q . The broken boxes
denote specific letters inDG while those drawn
with full lines are words inDG. Note that the
number of lines in the interior of each of the solid
boxes above decreases from top to bottom.

is an irreducible representation ofHi
G (all of these are known, from [22] for example). Then

Wγ = DG(Ei ⊗ εγ )

builds generic irreducibleWγ .
In fact our present concern is not to determine the generic irreducible dimensions for a

givenG, but to locate the exceptionalQ values (by analogy with the Beraha numbers for
G = An which is relevant for the two-dimensional case). To this end it is highly indicative
to proceed as follows.

We first decide on a sequence approaching the large graph limit (not the same as the
thermodynamic limit, see below). Thus, we take a sequence of graphs

G(−) = {Gj : j = 1, 2, . . .}
(with, say,Al × Am (l, m large) at the ‘end’ if we were to consider graphs appropriate for
cubic lattice Potts models as in the next section) and then determine

k
i,γ

G(−) = lim
j→∞

dim(DG(j)E
(nj )

i εγ )

dim(DG(j−1)E
(nj−1)

i εγ )
nj = |30

G(j) |

if it exists.
Since for theQ-state Potts model representation,

dim(ρG(j) )

dim(ρG(j−1) )
= Qm

for any sequence such that|30
G(j) | = |30

G(j−1) | + m, m a positive integer, ifki,γ
G(−) > Qm,

thenQ is exceptional by the following argument [9]. SinceE0 is a primitive idempotent
(i.e., E0DGE0 = CE0), DGE0 is indecomposable. IfDG(Q) were semisimple,DGE0
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would be contained inρG with multiplicity 1 for all G. Thus, the evaluation of the case
κG := k

0,(0)
G(−) is sufficient for any sequenceG(−). So, if dim(DGE0)> Qn (for Q an integer)

for n = |30
G|, Q is exceptional. For exampleki,γ

A(−) = 4 whereA(−) = {Gj = Aj }j>1, and
this signals the special nature of theQ = 1, 2, 3 state Potts models in two dimensions.

We can now consider the asymptotic growth rate of dimensions of the irreducible
representations. In particular, we estimate a lower bound on the dimension of the module
DGE0.

Proposition 7.For G = 2n
p,q (q 6 p 6 n − 2), and anyk ∈ <, there exists a natural

numberM, such that dim(DGE0) > kn for n > M.

Proof. Let bm be the number of ways of pairingm nodes (for some even numberm). For
any node (say 1), its partner (in the partition of shape(2m/2)) can be chosen inm− 1 ways,
while the rest of the pairs can be chosen inbm−2 ways. This determinesbm = (m− 1)bm−2

for all evenm, with b1 = 1. Thus for anyk ∈ <, ∃M, a natural number, such thatbm > km

for m > M. From proposition 5, for any basis element ofDG for G = 2n
p,q , n− 1 primed

nodes may be partitioned in any arbitrary way. The number of such possibilities is clearly
larger thatbn−1 (where we have chosenn to be odd, without loss of generality). Therefore,

dim (DGE0) > kn. �

Thus, for any integerQ andG of the type2n
p,q , the dimension ofDGE0 is larger than

that of the Potts representation,ρG (> Qn for Q a positive integer).
We thus have

Proposition 8.Consider a sequenceG(−) := {G(j)}j>1 of unsplitting graphs (except
G(j) = Âj ). For any positive integerQ, ∃ an integern1 s.t. ∀n2 > n1, DG(n2) is not
semisimple.

3. Cubic lattice Potts models:G = Al × Am

This is the case we are most interested in, to which we shall apply the results obtained in
section 2.

Proposition 9.ForG = Al × Am, (l, m > 2), andn = lm,
(i) Hn−1

G = A(n− 1)
(ii) Hi

G = S(i), i < n− 1.

Proof. (i) For n even,G has a subgraph2n
n−3,0, and forn odd, it has a subgraph2n

n−3,1.
Recall corollary 4.2. (ii) It is easy to see thatHn−2

2nn−3,0
andHn−2

2nn−3,1
for n = 4 are isomorphic

to each other and toHn−1
2nn−2,0

for n = 3. For i 6 n− 3, recall (24). �

Recall that the representations ofA(j) are indexed by unordered pairs of partitions,
λ ` j and its conjugateλ′, for λ 6= λ′. For λ = λ′ = λ̄, there are two non-isomorphic outer
automorphism-conjugate representations labelledλ̄ and λ̄∗.

Corollary 9.1. ForG = Al × Am,

0G = ∪n−2
i=0 {λ ` i} ∪ {(λ, λ′), λ̄, λ̄∗|λ, λ̄ ` n− 1} ∪ {λ ` n = (n)} .

is the index set for irreducible representations ofDG(Q).
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Note that by filling in one of the diagonals of an elementary plaquette ofG = Al ×Am,
we obtain a graph which has2n

n−2,0 as a subgraph. The index set for the irreducible
representations of the diagram algebras for such graphs with2n

n−2,0 subgraphs is the same
as that of the complete graph onn nodes (see [20]).

SinceAl × Am ⊃ 2n
p,q for somep, q, we have (from proposition 5),

Corollary 9.2. ForG = Al ×Am (n = lm), a partition basis elementz ∈ 1i (i < n− 1) is
also in the partition basisBG

i of aDG(Q)Ei-module iff
(i) ∃ at least one part ofz of the form(a′) (a singleton node,a ∈ 30

G), or
(ii) in the sub-partition ofz consisting of nodesi ′, i ∈ 30

G, one of the parts is of the form
(· · · a′b′ · · ·), where(a, b) ∈ 31

G,
and the rest may be partitioned in any arbitrary way.

Also, sinceG = Al × Am is of the unsplitting type, we infer

Proposition 10.Consider a sequenceG(−) := {G(j)}j∈Z+ , whereG(j) = Al × Am, l,m >

1, lm = j . For any positive integerQ, ∃ an integern1 s.t. ∀n2 > n1, DG(n2) is not
semisimple.

4. Discussion

For G = Al × A2 for instance, it might have naively been expected that for largel, the
results of the familiarAl case might be approached. However, instead of the known growth
rate of dimensions, i.e. 4, we get an unboundedly large number. This discrepancy might
be attributed to the length,k, of the graphAk in the transfer (‘time-like’) direction of the
latticeL = G×Ak, on which the partition function is evaluated. The connectivities of nodes
are achieved involve ‘permuting the nodes’, i.e. the action of (20), where each shift (18)
can only be realized fork > µi . A restriction of the maximumk allowed will obviously
reduce the dimensions and their growth rateκG. This is clearly necessary to define the true
thermodynamic limit, where the volume has to increase in a specified fashion, keeping the
ratios of lengths in all the directions of the lattice,L, fixed to some finite value, unlike
in the definition ofκG, where the size of theG was increased independent ofk. In the
two-dimensional case, the connectivities can all be achieved onL = An × Ak for k ∼ n,
and the problem does not arise. Thus, it might be useful to define a certain ‘cut-off’ height
k of the representations ofDG(Q) to narrow in on the physically relevant sectors of the
representation theory.

We have indicated that for the smallest deviations away from chain graphs, e.g.
2n
n−2,0, the diagram algebra is too large to carry directly useful physical information.

Suitable quotients have to be implemented to reduce the size of the representations and an
appropriately quotiented algebra would then be the analogous ‘generic’ algebra for the cubic
lattice models. The special values ofQ for which the algebra ceases to be semisimple is the
obvious place to look for the quotient relations that are relevant for the Potts representation
which is defined for integer values ofQ. These integers are certainly a subset of the special
points where the algebra ceases to be semisimple, as we have shown. We expect that
the techniques outlined in the appendix can be extended to obtain the degeneracies of the
cubic lattice Potts spectrum, which we would like to report in the future. We have also
undertaken preliminary calculations on the location of otherQ-values for whichDG(Q)

becomes non-semisimple forG = Al ×Am, and so far found only rationals. Further studies
are in progress.
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Appendix

Proposition 11.As left DG(Q) modules,PnEi
∼= DGEi ⊕RGi moduloDGEi−1DG for any

G, |G| = n, whereRGi is either empty or a direct sum ofθi copies of the trivialHi
G-modules,

χ(i), (i) ` i, RGi ∼= θiχ(i). Further, forλ ` i ∈ {0, 1, 2, . . . , n}, n = |30
G|,

ResPGDG PGVλ =
⊕


DGWλ ⊕ θiχ(i) ∀i ∈ {1, 2, . . . , n− 2}{
DGWλ,λ′ ⊕ θiχ(i) λ, λ′ ` i = n− 1,

DGWλ ⊕ DGW
∗
λ ⊕ θiχ(i) forλ = λ′ ` i = n− 1

⊕θiχ(i) for i = n .

(A1)

Proof. Aj ·PnEi = Ak,lPnEi = 0 modDGEi , therefore,DGx = 1x modDGEi∀x ∈ PnEi .
Hi
G acts trivially. Forλ ` n− 1, the labels of the representations ofPn(Q) andDG(Q) are

those ofS(n− 1) andA(n− 1), respectively, and ResS(n−1)
A(n−1) must be invoked. �

To characterize the generic structure of the algebra completely, it is necessary to
determine the dimensions of its irreducible representations. Also, it is useful to characterize
the inclusion of algebras, while approaching the large graph limit described above, in order
to identify the subspaces that carry the information relevant for a physical interpretation.
A preliminary step would be to determine how, forH ⊂ G, DG(Q)-modules split up as
DH(Q)-submodules. Henceforth, we shall denote a leftR-moduleM asRM.

Proposition 12.ForG = Al × Am andG ⊃ H = Al−1 × Am:

DGEi
∼= ⊕m

j=−m(DHEi+j ⊕ R
G,H
i+j )

as left DH(Q) modules, whereRG,Hi+j is either empty orθi+jχ(i+j), where θk is the
multiplicity of the trivial Hk

H -module,χ(k), (k) ` k.

Proof. Letm := {n−m+ 1, n−m+ 2, . . . , n} andpm := {1, 2, . . . , n−m}. If w ∈ DGEi

s.t. none of the parts ofw is of the form (. . . k′ . . . l′ . . .) for k′ ∈ pm and l′ ∈ m,
DHw ∼= ⊕m

j=0DHEi−j . Each summand indexed byj denotes the number of parts of
w which contain only primed nodes.

Similarly, if the nodes ofm are in somej 6 m parts with nodes ofpm, we get
DHw ∼= ⊕m

j=0DHEi+m−j , where once again,j counts the number of parts ofw containing
only primed nodes.

As before, forx ∈ DGEi , DHx = 1x modDGEi , andHi
G thus acts trivially. �

Let DGWγ denote an irreducible leftDG(Q) module,γ ∈ 0G. We are interested in the
restriction ResDGDH DGWγ . Note the following inclusion of algebras:

DG(Q) ⊂ P|30
G|

∪ ∪
DH(Q) ⊂ P|30

H |
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and consider the corresponding restrictions of modules:

ResPGPH PGVλ = ⊕µξλµ PH Vµ λ ∈ L|30
G| µ ∈ L|30

H |

ResPGDG PGVλ = ⊕γ gλγ DGWγ λ ∈ L|30
G| γ ∈ 0G

ResPHDH PH Vµ = ⊕ηhµη DHWη λ ∈ L|30
H | µ ∈ 0H

ResDGDH DGWγ = ⊕µmγη DHWη γ ∈ 0G η ∈ 0H

(A2)

wherePG := P|30
G| and (recall) the index sets labelling the irreducible representations of

Pn(Q) andDG(Q) areLn and0G, respectively.
Let dim(DGWγ ) be denoteddγ and dim(DHWη) := dη. Since the representations have

already been assigned an index set, it is sufficient to determine the inclusion matrixM,
whose entries are the multiplicitiesmγη in

dγ =
∑
η

mγηdη

in order to complete the study of the generic irreducibles.
To obtain this, recall that ResPGPH is known, i.e. the coefficientsξλµ ∈ 4m, where the

inclusion matrix4 encodes the restriction informationPn−1(Q) ⊂ Pn(Q) has been given
in [19] andm = |30

G| − |30
H |. For a (left)Pn(Q)-module, PnVλ,λ ` i,

ResPnPn−1 Pn
Vλ =

⊕ 
Pn−1Vλ′ i − 1 a λ′ C λ

Pn−1Vλ ⊕ Pn−1Vλ′ i a λ′ BC λ

Pn−1Vλ′ i + 1 a λ′ B λ

whereλ B µ denotes the ‘removal of a box’ fromλ to produceµ, λ C µ, denotes the
‘addition of a box’ toλ to produceµ, andλ BC µ means that we first remove a box fromµ
to obtain someν (say), and then add a box toν to obtainλ. Addition and removal of boxes
correspond to the induction and restriction rules for symmetric group representations, called
the Pieri (or Littlewood–Richardson) rules. Also note that in the above,Pn−1Vλ

∼= PnVλ.
This is the key piece of information which, together with proposition (A1), will indicate

the way to obtainmγη. Let us evaluate ResPGDH in two ways, corresponding to the paths in
the diagram indicating the inclusion of algebras above (restrictions are transitive).

ResPGDH = ResDGDH ResPGDG = ResPHDH ResPGPH .

Thus, from one path we get,

ResPGDH PGVλ = ResPHDH
(
ResPGPH PGVλ

) = ⊕µ ⊕η ξλµhµη DHWη (A3)

while from the other,

ResPGDH PGVλ = ResDGDH
(
ResPGDGPGVλ

) = ⊕γ ⊕η gλγmγη DHWη . (A4)

Let the inclusion matrices6i andϒj

i encode the restriction information ResA(i)
S(i) and

ResA(j)A(i) , with matrix elements(6i)a,b = ς
(i)
a,b, and (ϒj

i )a,b = υ
(i,j)

a,b , respectively. Then,
the restriction information between representations that are not among the list of one-
dimensional representations (χ(i)), is extracted from the above.

m̃γ η =


ξγη, γ ` k < n− 1 η ` l < n−m− 1∑
µ

ξγµς
(n−m−1)
µη γ ` k < n− 1, µ, η ` l = n−m− 1

υ(n−1,n−m−1)
γ η γ ` n− 1, η ` n−m− 1 .



278 S Dasmahapatra and P Martin

In the above, we have used̃mγη instead ofmγη to indicate thatm̃γ η does not give the
multiplicities θi of the one-dimensional representations,χ(i). The number of suchχ(i) is
not known in general. Diagrammatically their determination is a combinatorial problem of
enumerating the number of ‘top’ configurations that are characterized by corollary 9.2.

We have constructed an algorithm for their enumeration by using recurrence relations
for G = Al × A2, but we have not been able to solve it in closed form. For arbitrary
rectangular graphs, the combinatorics is much more complicated.
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